Building an ex vivo MRI Atlas of the Earliest Brain Regions Affected by Alzheimer's Disease Pathology

> Sadhana Ravikumar Department of Bioengineering,

University of Pennsylvania

Alzheimer's Disease (AD)

- Most common cause of dementia among older adults (60-80%)
- Decline in memory, language, and logical thinking

by 2050, the number of patients could triple without effective treatment

Neuropathology of Alzheimer's Disease

 Changes in the brain begin a decade or more before memory and other cognitive problems appear

Earliest Neurofibrillary Tangle (NFT) pathology occurs in the Medial Temporal Lobe (MTL)

Engineering

in vivo biomarker: volumetric changes in structural MRI (sMRI)

Focusing on the MTL for better biomarkers

- NFT pathology follows a characteristic pattern of spread
- MTL also affected by other commonly co-morbid pathologies

Need to identify and obtain structural measurements from AD-specific regions

Penn

Engineering

Darker colors indicate regions that are affected earlier

Challenges in existing MTL morphometry studies in MRI

2D nature of histology (based on one or two sections)

Anatomical variability

T1-weighted, 3 Tesla whole-brain 1 x 1 x 1 mm³

in vivo studies are limited by low-resolution of images

Ding et al., (2010) 6

Guiding Hypothesis

Ex vivo imaging combined with **serial histopathology** provides a direct link between MRI measures of MTL structure and the underlying pathology.

In vivo MRI biomarkers defined over MTL regions where structural changes correlate most strongly with AD-specific pathology, would be more sensitive to disease progression during preclinical AD.

Reconstructed histology

Adler, Wisse et al. "Characterizing the human hippocampus in aging and Alzheimer's 7 Disease suing a computational atlas derived from ex vivo MRI ad histology" (2018)

Need to construct a probabilistic atlas of the MTL

- Requires groupwise registration of MRI scans of all specimens to create an "average" MTL template
- Provides common reference space across subjects to...
 - characterize anatomical variability in the MTL
 - examine correlations between MRI measures of structural change and pathological markers
 - study the 3D distribution of NFT pathology

- 9.4T, T2-weighted MRI of 24 MTL autopsy specimens (0.2 x 0.2 x 0.2 mm³ resolution)
- 21 specimens had **semi-quantitative pathological rating**

The conventional approach is to build an <u>unbiased</u> <u>population template</u> using iterative deformable registration and image averaging

Algorithm 1 Atlas construction framework

- 1: **Input** : N volume inputs
- 2: Output: Template atlas volume
- 3: for k = 1 to max_iters do
- 4: Fix images I_i^k , compute the optimal template $\hat{I}^k = \frac{1}{N} \sum_{i=1}^N I_i^k$
- 5: for i = 1 to N do {loop over the images}
- 6: Fix the template \hat{I}^k , solve pairwise-matching problem between I_i^k and \hat{I}^k
- 7: Update the image with optimal velocity field
- 8: end for
- 9: **end for**

Deformable registration

In ex vivo MRI, the unbiased population template approach does not do a good job of capturing complex anatomical details

A shape + intensity approach to building an ex vivo atlas

- Requires segmentations of MTL to guide registration
- Interslice-interpolation used to facilitate manual segmentation
- Challenges:
 - Unresolved sulcal folds

• Image artifacts

A shape + intensity approach to building an ex vivo atlas

- Requires segmentations of MTL to guide registration
- Interslice-interpolation used to facilitate manual segmentation
- Challenges:
 - Unresolved sulcal folds
 - Explicit labelling to enforce a separation (blue)
 - Image artifacts
 - Explicit label to mask out affected regions from intensitybased registration (green)

Coronal slices with manual segmentations

Sagittal slice with interpolated segmentation

3D rendering

The shape + intensity approach to building an ex vivo atlas of the MTL consists of three stages

Uses a graph-based approach to shape matching

1. Shape Matching >>2. Shape Averaging

3. Groupwise Intensity Registration

- A complete graph is constructed from all shapes
- Edges weighted by shape dissimilarity

$$\eta_{ij} = 1 - \frac{1}{2} \text{GDSC}(\mathbf{S}_{i}, \mathbf{S}_{j} \circ \mathbf{A}_{i \to j}^{\text{rough}} \circ \phi_{i \to j}^{\text{rough}})$$

$$- \; \frac{1}{2} \text{GDSC}(\mathbf{S}_{i} \circ \mathbf{A}^{\text{rough}}_{\mathbf{j} \rightarrow \mathbf{i}} \circ \phi^{\text{rough}}_{\mathbf{j} \rightarrow \mathbf{i}}, \mathbf{S}_{\mathbf{j}})$$

Use a graph-based approach to shape matching

1. Shape Matching > >2. Sha

2. Shape Averaging

3. Groupwise Intensity Registration

- A minimum spanning tree (MST) is formed on this graph
- The root of the tree is identified
- All shapes are deformed to the root shape using the sequence of deformable registrations following the MST paths

Shape averaging using the geodesic shooting framework

1. Shape Matching

2. Shape Averaging

3. Groupwise Intensity Registration

• Transformation represented by initial momentum (geodesic shooting)

Compute diffeomorphic transformation to match average shape, S_m to subject space, S_j Apply geodesic shooting in direction of average initial momenta to update S_m

Compute unbiased population template after applying initialization transformations from 'Stage 2'

1. Shape Matching >>2. Shape Averaging

3. Groupwise Intensity Registration

- <u>Unbiased population template</u> construction algorithm is applied to MR images deformed into the space of the shape average
- Shape matching and averaging serve as initialization to intensity-based registration

Evaluation of atlas quality by approach and stage

PENN IMAGE COMPUTING

& SCIENCE LABORATOR

Penn Engineer

Engineering

Individual specimens warped into atlas space look similar to each other

Association of cortical thickness with severity of tau pathology in the MTL

Subject	Tau ERC	Tau DG	Tau CA	Average Tau
Α	3	2	3	2.67
В	1	2	0.5	1.67
С	2	2	3	2.33
	:	:	:	:

Semi-quantitative measures of tau pathology

Penn Engineer

Engineering

1 – Stage I or II

3 – Stage V or VI

Association of cortical thickness with severity of tau pathology in the MTL

Model: Thickness = (MTL Tau) * b1 + (Age) * b2 + (MTL TDP43) * b3 + Error

Engineering

ERC = Entorhinal Cortex, DG = Dentate Gyrus, CA = Cornu Ammonis Braak and Braak, 1991, 1995; 21

Towards more quantitative pathology measurements

- Weakly supervised learning used to quantify tau pathology in serial histology images
- Corresponding ex vivo MRI and histology images registered to allow <u>visualization of tau density "heat maps"</u> <u>in atlas space</u>
- Details in "3D Mapping of Tau Neurofibrillary Tangle Pathology in the Human Medial Temporal Lobe" Yushkevich et al. (ISBI 2020)

- Ex vivo imaging allows us to directly correlate MTL structural change with the underlying pathology
- Customized shape and intensity based registration pipeline used to construct ex vivo atlas of the MTL
- Can be used to define regional "hot spots" where AD pathology correlates most strongly with MTL structural change

Acknowledgements

- We gratefully acknowledge the participants in the imaging studies; tissue donors; and their families
- Co-authors and contributors:

Penn Image Computing and Science Laboratory Paul Yushkevich Daniel H Adler Laura Wisse Ranjit Ittyerah Madigan Lavery Long Xie Sydney Lim Sandhitsu Das Robin de Flores John B Pluta Jiancong Wang

David Wolk, Director of Penn Memory Center and Penn ADCC Clinical Core

Department of Radiology

Stephen Pickup Dylan M Tisdall Weixia Lui Gabor Mizsei

CNDR and UCLM brain banks

Penn Neurology Murray Grossman John A Detre

<u>Penn CNDR</u> John Q Trojanowski Teresa Schuk John Robinson

Song-Lin Ding, Allen Institute for Brain Science

Michael Miller, Center for Imaging Science, Johns Hopkins University

University of Castilla-La Mancha, Spain

Ricardo Insausti Emilio Artacho-Perula Maria del Mar Arroyo-Jimenez Monica Muñoz Maria del Pilar Marcos-Rabal Francisco Molinar Mercedies Iniguez Onzoño-Martn

Grant Support

This work is supported by NIH grants R01 EB017255, R01 AG056014, and P30 AG010124

Thanks for your attention!

Questions?

